Home
Class 12
MATHS
Prove that sum(r=0)^(2n) r.(""^(2n)C(r))...

Prove that `sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1)`.

Text Solution

Verified by Experts

`S=underset(r=0)overset(2n)sumr.(.^(2n)C_(r))^(2)`
`= underset(r=0)overset(2n)sum(r..^(2n)C_(r))(.^(2n)C_(r))`
`= underset(r=0)overset(2n)sum(2n)^(2n-1)C_(r-1)..^(2n)C_(2n-r)`
`= 2n`(Coefficient of `x^(2n-1)` in the expansion of `(1+x)^(2n-1)(1+x)^(2n))`
`= 2n`(coefficient of `x^(2n-1)` in the expansion of `(1+x)^(4n-1)`)
`= 2n xx .^(4n-1)C_(2n-1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Statement -1: sum_(r=0)^(n) r(""^(n)C_(r))^(2) = n (""^(2n -1)C_(n-1)) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))^(2)= ""^(2n)C_(n)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

Statement-1: sum_(r=0)^(n) (1)/(r+1) ""^(n)C_(r) = (1)/((n+1)x) {( 1 + x)^(n+1) -1}^(-1) Statement-2: sum_(r=0)^(n) (""^(n)C_(r))/(r+1) = (2^(n+1))/(n+1) .

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

Prove that sum_(r=0)^(n)C_(r)sin rx cos(n-r)x=2^(n-1)sin(nx)