Home
Class 12
MATHS
Prove that ^100 C2^(100)C2+^(100)C2^(100...

Prove that `^100 C_2^(100)C_2+^(100)C_2^(100)C_4+^(100)C_4^(100)C_6++^(100)C_(98)^(100)C_(100)=1/2[^(200)C_(98)-^(100)C_(49)]dot`

Text Solution

Verified by Experts

To find
`S = .^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"....."+.^(100)C_(98).^(100)C_(100)`
Consider,
`.^(100)C_(0).^(100)C_(2)+.^(100)C_(1).^(100)C_(3) + .^(100)C_(2).^(100)C_(4)+.^(100)C_(3)+.^(100)C_(5)+"...." + .^(100)C_(98).^(100)C_(100)`
`= .^(100)C_(0).^(100)C_(98)+.^(100)C_(1).^(100)C_(97) + .^(100)C_(2).^(100)C_(96)+.^(100)C_(3).^(100)C_(95) + "....."+^(100)C_(98) .^(100)C_(0)`
= Coefficients of `x^(98)` in `(1+x)^(100) (1+x)^(100)`
`= .^(200)C_(98) " "(1)`
Also,
`.^(100)C_(0).^(100)C_(2)-.^(100)C_(1).^(100)C_(3) +.^(100)C_(2).^(100)C_(4)-.^(100)C_(3).^(100)C_(5)+"..."+.^(100)C_(98).^(100)C_(100)`
`=` Cefficient of `x^(98)` in `(1+x)^(100)(1-x)^(100)`
`=` Coefficient of `x^(98)` in `(1-x^(2))^(100)`
`= -.^(100)C_(49)`
Adding (1) and (2), we have
`2(.^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"...."+.^(100)C_(98).^(100)C_(100))`
`= [.^(200)C_(98)-.^(100)C_(149)]`
`rArr .^(100)C_(0).^(100)C_(2)+.^(100)C_(2).^(100)C_(4)+.^(100)C_(4).^(100)C_(6)+"....."+.^(100)C_(98).^(100)C_(100)`
`= 1/2[.^(200)C_(98) - .^(100)C_(49)]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that ^100C_(2)^(100)C_(2)+^(100)C_(2)^(100)C_(4)+^(100)C_(4)^(100)C_(6)+...+^(100)C_(98)^(100)C_(100)=(1)/(2)[^(200)C_(98)-^(100)C_(49)]

Prove that 100C_(0),100C_(2)+100C_(2),100C_(4)+100C_(4)+100C_(6)+....+100C_(98),100C_(100)=(1)/(2)[200C_(98)-100C_(49)

Evaluate: (i) ^(10)C_3 (ii) ^(100)C_(98) (iii) ^(60)C_(60)

Prove:- (100-100)/(100-100) =2

Sum of the series (100C_(1))^(2)+2.(100C_(2))^(2)+3.(100C_(3))^(2)+....+100(100C_(100))^(2) equals

The coefficient of x^(53) in the expansion sum_(m=0)^(100)^(100)C_m(x-3)^(100-m)2^m is ^100 C_(47) b. ^100 C_(53) c. -^(100)C_(53) d. none of these

Evaluate: ^100C_97

If ""^(100)C_(6)+4." "^(100)C_(7)+6." "^(100)C_(8)+4." "^(100)C_(9)+""^(100)C_(10) has the value equal to " "^(x)C_(y) , then the possible value (s) of x+y can be :

the value of lambda if sum^(100)C_(m)*^(m)C_(97)=2^(lambda)*^(100)C_(97)

Consider a sequence of 101 term as (.^(100)C_(0))/(1.2.3.4),(.^(100)C_(1))/(2.3.4.5),(.^(100)C_(2))/(3.4.5.6),.....(.^(100)C_(100))/(101.102.103.104) If n^(th) ​ term is greatest term of sequence, then n is equal to :- A)48 B)49 C)50 D)51