Home
Class 12
MATHS
If (18 x^2+12 x+4)^n=a0+a(1x)+a2x2++a(2n...

If `(18 x^2+12 x+4)^n=a_0+a_(1x)+a2x2++a_(2n)x^(2n),` prove that `a_r=2^n3^r(^(2n)C_r+^n C_1^(2n-2)C_r+^n C_2^(2n-4)C_r+)` .

Text Solution

Verified by Experts

`(18x^(2)+12x+4)^(n) = 2^(n)[2+9x^(2)+6x]^(n)`
Now, `a_(r )` is coefficient of `x^(r )` in `2^(n) [(3x+1)^(2)+1]^(n)`. Hence
`a_(r) =` Coefficient of `x^(r )2^(n)[.^(n)C_(0)(3x+1)^(2n)+.^(n)C_(1)(3x+1)^(2n-2) + .^(n)C_(2)(3x+1)^(2n-4)+"…."+.^(n)C_(r )(3x+1)^(2n-2r)+"....."]`
or `a_(r)=2^(n)[.^(n)C_(0)3^(r).^(2n)C_(r)+.^(n)C_(1)3^(r).^(2n-2)C_(r)+.^(n)C_(2)3^(r).^(2n-4)C_(r)+"...."]`
`= 2^(n)3^(r)[.^(n)C_(0).^(2n)C_(r)+.^(n)C_(1).^(2n-2)C_(r)+.^(n)C_(2).^(2n-4)C_(r)+"...."]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If (18x^(2)+12x+4)^(n)=a_(0)+a_(1x)+a_(2x)^(2)+......+a_(2n)x^(2n), prove that a_(r)=2^(n)3^(r)(^(2n)C_(r)+^(n)C_(1)^(2n-2)C_(r)+^(n)C_(2)2n-4C_(r)+....

(18x^(2)+12x+4)^(n)=a_(0)+a_(1x)+a_(2x)^(2)+...+a_(2n)x^(2n) prove that a_(r)=2^(n)3^(r)(^(2n)C_(r)+^(n)C_(1)^(2n-2)C_(r)+^(n)C_(2)^(2n-4)C_(r)+...)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

Prove that sum_(r=0)^(2n)(.^(2n)C_(r))^(2)=n^(4n)C_(2n)

Prove that ""^(n)C_(r )+2""^(n)C_(r-1)+ ""^(n)C_(r-2)= ""^(n+2)C_(r ) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " + 3^(2) *C_(3) + …+ n^(2) *C_(n) 1^(2)*C_(1) + 2^(2) *C_(2) = n(n+1)* 2^(n-2) .

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

If (1+2x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then a=(^(n)C_(2))^(2) b.^(n)C_(r).^(n)C_(r+1) c.^(2n)C_(r) d.^(2n)C_(r+1)