Home
Class 12
MATHS
Prove that lim(xrarr0) ((1+x)^(n) - 1)/(...

Prove that `lim_(xrarr0) ((1+x)^(n) - 1)/(x) = n`.

Text Solution

Verified by Experts

`underset(x=0)"lim"((1-x)^(n)-1)/(x)`
`= underset(xrarr0)"lim"([1+nx+(n(n-1))/(2!)x^(2)+(n(n-1)(n-2))/(3!)x^(3)+"....."]-1)/(x)`
`= underset(xrarr0)"lim"[n+(n(n-1))/(2!)x+(n(n-1)(n-2))/(3!)x^(2)+"..."]`
`= n+0+0+"...."`
`= n`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) ((x+1)^(5)-1)/(x)

Evaluate lim_(xrarr0)((1+x)^(n)-1)/(x)

Evalvate lim_(xrarr0)((1+x)^(4)-1)/(x).

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

Proved that lim_(xrarr0) (tanx)/x = 1

lim_(xrarr0) (sqrt(1+x+x^(2))-1)/(x)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

Evaluate lim_(xrarr0) (1+x)^(1/x)

Evalute lim_(xrarr0)((e^(3x)-1)/(x)).

lim_(xrarr0)(cos (sinx)-1)/(x^2)=