Home
Class 12
MATHS
Prove that (^n C0)/x-(^n C0)/(x+1)+(^n C...

Prove that `(^n C_0)/x-(^n C_0)/(x+1)+(^n C_1)/(x+2)-+(-1)^n(^n C_n)/(x+n)=(n !)/(x(x+1)(x-n)),` where `n` is any positive integer and `x` is not a negative integer.

Text Solution

Verified by Experts

Let
`f(x) = (n!)/(x(x+1)(x+2)"...."(x+n))`
`= (A_(0))/(x) + (A_(1) )/(x+1) + (A_(2))/(x+2)+"...."+(A_(n))/(x+n)`.
(by partial fractions )
Then `A_(0)=[xf(x)]_(x=0)=(n!)/(1.2.3"...."n) =1=.^(n)C_(0)`
`A_(1) = [(x+1)f(x)]_(x) = - 1`
`= (n!)/((-1){1.2"....."(n-1)})`
`= (-(n!))/((n-1)!) = -.^(n)C_(1)`
`A_(2) = [(x+2)f(x)]_(x=-2)`
`=(n!)/((-2).(-1).1.2"....."(n-2))`
`= (n!)/(2!(n-2)!) = .^(n)C_(2)` and so on
Thus, `(n!)/(x(x+1)(x+2)"....."(x+n))`
`(.^(n)C_(0))/(x) - (.^(n)C_(1))/(x+1) + (.^(n)C_(2))/(x+2) - "....." + (-1)^(n) (.^(n)C_(n))/(x+n)" "(1)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that (nC_(0))/(x)-(n_(C_(0)))/(x+1)+(^nC_(1))/(x+2)-...+(-1)^(n)(n_(n))/(x+n)=(n!)/(x(x+1)...(x-n)) where n is any positive integer and x is not a negative integer.

Solve (x-1)^(n)=x^(n), where n is a positive integer.

If f(x)=(p-x^(n))^((1)/(n)),p>0 and n is a positive integer then f[f(x)] is equal to

int(x-a)(x^(n-1)+x^(n-2)a+...+a^(n-1))dx where n is +ve integer =

Prove by mathematical induction that (1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^n))=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1))) where , |x|ne 1 and n is non - negative integer.

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .