Home
Class 12
MATHS
Find the coefficients of x^(50) in the e...

Find the coefficients of `x^(50)` in the expression `(1+x)^(1000)+2x(1+x)^(999)+3x^2(1+x)^(998)++1001 x^(1000)` .

Text Solution

Verified by Experts

The given series is `A.G.P..` Lets first find its sum.
Writing t for `1+x`, let
`S = t^(1000) + 2xt^(999) + 3x^(2)t^(998) + "….." + 1001x^(1000)`
`:. (x//t) . S = xt^(999) + 2x^(2)t^(998) + "…." + 1001x^(1001)//t`
Substracting , we get
`S(1-x//t) = t^(1000) + xt^(999) + x^(2)t^(998) + "....." + x^(1000) - 1001x^(1001)//t`
`= (t^(1000) [1-(x//t)^(1001)])/(1-x//t) - (1001x^(1001))/(t)`
or `S = (1+x)^(1002) - x^(1001) (1+x) - 1001 x^(1001)`
(Putting `t = 1+x` and simplifying)
`:.` Coefficient of `x^(50)` in the expansion `=` coefficient of `x^(500` in the expansin of `(1+x)^(1002) = .^(1002)C_(50)`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the coefficients of x^(50) in the expression (1+x)^(1000)+2x(1+x)^(999)+3x^(2)(1+x)^(998)+...+1001x^(1000)

Find the coefficients of x^4 in the expansion of (1+x+x^2)^3

Find the coefficient of x^(50) in the expansion of (1+x)^(101)xx(1-x+x^(2))^(100)

Find the coefficient of x^(n) in the expansion of (1)/((1-x)(1-2x)(1-3x))

Find the coefficient of x in the expansion of (1 - 3x + 7x^(2)) (1 - x)^(16) .

Find the coefficient of x^(13) in the expansion of (1-x)^(5)xx(1+x+x^(2)+x^(2))^(4)

Find the coefficient of : x in the expansion of (1-3x+7x^(2))(1-x)^(16)

Find the coefficient of x^3 in the expansion of 1+(1+x)+(1+x)^2+(1+x)^3+...+(1+x)^n