Home
Class 12
MATHS
Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q...

Given, `s_n=1+q+q^2++q^n ,S_n=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1` prove that `^n+1C_1+^(n+1)C_2s_1+^(n+1)C_3s_2++^(n+1)C_(n+1)s_n2^n S_ndot`

Text Solution

Verified by Experts

`s_(n)` is in geometric progression, hence,
`s_(n) = (q^(n+1) -1)/(q-1) . q ne 1`
Also, `S_( n)` is geometric progression.
`:. S_(n) = (((q+1)/(2))^(n+1)-1)/(((q+1)/(2))-1) = ((q+1)^(n+1).-2^(n+1))/(2^(n)(q-1))`
Consider `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+.^((n+1))C_(3)s_(3)+"....."+.^((n+1))C_(n+1)s_(n)`
`.^((n+1))C_(1)((q-1)/(q-1))+.^((n+1))C_(2)(q^(2)-1)(q-1)+"......"+.^((n+1))C_(n+1)(q^(n+1)-1)/(q-1)`
`=(1/(q-1))[{.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)}-{.^((n+1))C_(1)+.^((n+1))C_(2)+"....."+.^((n+1))C_(n+1)}]`
`= ((1)/(q-1)) [{(1+q)^(n+1)-1}-{2^(n+1)-1}]`
Since
`{{:((1+q)^(n+1)=.^(n+1)C_(0)+.^((n+1))C_(1)q+.^((n+1))C_(2)q^(2)+"...."+.^((n+1))C_(n+1)q^(n+1)),(" "2^(n-1)=.^((n+1))C_(0)+.^((n+1))C_(1)+"...."+.^((n+1))C_(n+1)):}}`
`rArr ((1)/(q-1))[(1+q)^(n+1)-2^(n+1)-2^(n+1)]= ((1+q)^(n+1)-2^(n+1))/(q-1)`
Thus, `.^((n+1))C_(1)+.^((n+1))C_(2)s_(1)+"....."+.^((n+1))C_(n+1)s_(n) = ((1+q)^(n+1)-2^(n+1))/(q-1)`
Therefore, `.^(n+1)C_(1) + .^((n+1))C_(2)s_(1) + "....."+.^((n+1))C_(n+1)s_(n+1)=2^(n)S_(n)` (Using (1))
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Given,s_(n)=1+q+q^(2)+....+q^(n),S_(n)=1+(q+1)/(2)+((q+1)/(2))^(2)+...+((q+1)/(2))^(n),q!=1 prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+^(n+1)C_(3)s_(2)+......+^(n+1)C_(n+1)s_(n)=2^(n)S_(n)

Let S_k=1+q+q^2+...+q^k and T_k=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^k q!=1 then prove that sum_(r=1)^(n+1) ^(n+1)C_rS_(r-1)=2^ nT_n

Given s=1+q+q^(2)+...+q^(n),S_(n)=1+(q+(1)/(2))+(q+(1)/(2))^(2)+......+(q+(1)/(2))^(n) then prove that ^(n+1)C_(1)+^(n+1)C_(2)s_(1)+......,+^(n+1)C_(n+1)s_(n)=2^(n)s_(n)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Let S_(n)=1+q+q^(2)+?+q^(n) and T_(n)=1+((q+1)/(2))+((q+1)/(2))^(2)+?+((q+1)/(2)) If alpha T_(100)=^(101)C_(1)+^(101)C_(2)xS_(1)+^(101)C_(101)xS_(100), then the value of alpha is equal to (A) 2^(99)(B)2^(101)(C)2^(100) (D) -2^(100)

Delta[[ Prove that ,, 11,1,1nC1,(n+1)C1,(n+2)C1(n+1)C2,(n+2)C2,(n+3)C2]]=1

Let S_n=1/1^2 + 1/2^2 + 1/3^2 +….. + 1/n^2 and T_n=2 -1/n , then :

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Prove that C_0+(C_1)/(2)+(C_2)/(3)+....+(C_n)/(n+1)=(2^(n+1)-1)/(n+1)

Consider (1+x)^(n+1)=A_(0)+A_(1)x+A_(2)x^(2)+………………+A_(n+1)x^(n+1) and a_(n)=1++q^(2)+……………+q^(n) and b_(n)=1+((q+1)/2)+((q+1)/2)^(2)+……….+((q+1)/2)^(n) Where q!=1 The value of (1-q)(A_(1)+A_(2)a_(1)) at n=1 is