Home
Class 12
MATHS
Prove that (.^(n)C(1)sin2x+.^(n)C(2)sin4...

Prove that `(.^(n)C_(1)sin2x+.^(n)C_(2)sin4x+.^(n)C_(3)sin6x+"…..")/(1+.^(n)C_(1)cos2x+.^(n)C_(2)cos4x+.^(n)C_(3)cos 6x+"……")`

Text Solution

Verified by Experts

L.H.S. `=(underset(r=0)overset(n)sum.^(n)C_(r)sin2rx)/(underset(r=0)overset(n)sum.^(n)C_(r)cos2x)" "(1)`
`0=(underset(r=0)overset(n)sum.^(n)C_(n-r)sin2(n-r)x)/(underset(r=0)overset(n)sum.^(n)C_(n-r)cos2(n-r)x)`
`=(underset(r=0)overset(n)sum.^(n)C_(r)sin(2n-2r)x)/(underset(r=0)overset(n)sum.^(n)C_(r)cos(2n-2r)x)" "(2)`
`=(underset(r=0)overset(n)sum.^(n )C_(r)sin2rx+underset(r=0)overset(n)sum.^(n)C_(r)sin(2n-2r)x)/(underset(r=0)overset(n)sum.^(n)C_(r)cos2rx+underset(r=0)overset(n)sum.^(n)C_(r)cos(2n-2r)x)`.
(Using `a/b = c/d = (a+c)/(b+d)` and using (1) and (2))
`= (underset(r=0)overset(n)sum.^(n)C_(r)[sin2rx+sin(2n-2r)x])/(underset(r=0)overset(n)sum.^(n)C_(r)[cos2rx+cos(2n-2r)x])`
`= (2sin nx underset(r=0)overset(n)sum.^(n)C_(r)cos(2r-n)x)/(2cos nx underset(r=0)overset(n)sum.^(n)C_(r)cos(2r-n)x) = tan nx`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that cos x+^(n)C_(1)cos2x+^(n)C_(2)cos3x+....+^(n)C_(n)cos(n+1)x=2^(n)*(cos^(n)x)/(2)*cos((n+2)/(2))x

Prove that sum_(r=0)^(n)C_(r)sin rx cos(n-r)x=2^(n-1)sin(nx)

Prove that 1-^(n)C_(1)(1+x)/(1+nx)+^(n)C_(2)(1+2x)/((1+nx)^(2))-^(n)C_(3)(1+3x)/((1+nx)^(3))+

Prove that ^nC_(0)+^(n)C_(3)+^(n)C_(6)+...=(1)/(3)(2^(n)+2cos(n pi)/(3))

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

Prove that nC_ (1) sin x * cos (n-1) x + nC_ (2) sin2x * cos (n-2) x + nC_ (3) sin3x * cos (n-3) x + ... + nC_ ( n) sin nx = 2 ^ (n-1) sin nn

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

sin^(3)x sin3x=c_(0)-c_(1)cos x+c_(2)cos2x+....c_(n)cos nx

lim_(sin x sin3x)=c_(0)+c_(1)cos x+c_(2)cos2x+....+c_(n)cos nx