Home
Class 12
MATHS
Represent cos 6 theta in terms of cos th...

Represent `cos 6 theta` in terms of `cos theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To represent \( \cos 6\theta \) in terms of \( \cos \theta \), we can use the binomial theorem and the properties of complex numbers. Here’s a step-by-step solution: ### Step 1: Use Euler's Formula We start by expressing \( \cos 6\theta \) using Euler's formula: \[ \cos 6\theta = \text{Re}(e^{i6\theta}) = \text{Re}((e^{i\theta})^6) = \text{Re}((\cos \theta + i \sin \theta)^6) \] ### Step 2: Expand Using the Binomial Theorem Using the binomial theorem, we expand \( (\cos \theta + i \sin \theta)^6 \): \[ (\cos \theta + i \sin \theta)^6 = \sum_{k=0}^{6} \binom{6}{k} (\cos \theta)^{6-k} (i \sin \theta)^k \] This simplifies to: \[ = \sum_{k=0}^{6} \binom{6}{k} (\cos \theta)^{6-k} (i^k)(\sin \theta)^k \] ### Step 3: Separate Real and Imaginary Parts The real part of this expansion gives us \( \cos 6\theta \): \[ \cos 6\theta = \sum_{k \text{ even}} \binom{6}{k} (\cos \theta)^{6-k} (i^k)(\sin \theta)^k \] The terms with \( k \) even contribute to the real part, while those with \( k \) odd contribute to the imaginary part. ### Step 4: Calculate the Relevant Terms Calculating the relevant terms for \( k = 0, 2, 4, 6 \): - For \( k = 0 \): \[ \binom{6}{0} (\cos \theta)^6 (i^0)(\sin \theta)^0 = \cos^6 \theta \] - For \( k = 2 \): \[ \binom{6}{2} (\cos \theta)^4 (i^2)(\sin \theta)^2 = 15 \cos^4 \theta (-1) \sin^2 \theta = -15 \cos^4 \theta \sin^2 \theta \] - For \( k = 4 \): \[ \binom{6}{4} (\cos \theta)^2 (i^4)(\sin \theta)^4 = 15 \cos^2 \theta (1) \sin^4 \theta = 15 \cos^2 \theta \sin^4 \theta \] - For \( k = 6 \): \[ \binom{6}{6} (\cos \theta)^0 (i^6)(\sin \theta)^6 = 1 \cdot (-1) \cdot \sin^6 \theta = -\sin^6 \theta \] ### Step 5: Combine the Real Parts Now, combining these terms, we get: \[ \cos 6\theta = \cos^6 \theta - 15 \cos^4 \theta \sin^2 \theta + 15 \cos^2 \theta \sin^4 \theta - \sin^6 \theta \] ### Step 6: Use the Identity \( \sin^2 \theta = 1 - \cos^2 \theta \) Substituting \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ \cos 6\theta = \cos^6 \theta - 15 \cos^4 \theta (1 - \cos^2 \theta) + 15 \cos^2 \theta (1 - \cos^2 \theta)^2 - (1 - \cos^2 \theta)^3 \] ### Step 7: Simplify the Expression Now, we simplify the expression: 1. Expand \( (1 - \cos^2 \theta)^2 \) and \( (1 - \cos^2 \theta)^3 \). 2. Combine like terms. After simplification, we arrive at the final expression for \( \cos 6\theta \) in terms of \( \cos \theta \). ### Final Result The final expression for \( \cos 6\theta \) in terms of \( \cos \theta \) is: \[ \cos 6\theta = 32 \cos^6 \theta - 48 \cos^4 \theta + 18 \cos^2 \theta - 1 \]

To represent \( \cos 6\theta \) in terms of \( \cos \theta \), we can use the binomial theorem and the properties of complex numbers. Here’s a step-by-step solution: ### Step 1: Use Euler's Formula We start by expressing \( \cos 6\theta \) using Euler's formula: \[ \cos 6\theta = \text{Re}(e^{i6\theta}) = \text{Re}((e^{i\theta})^6) = \text{Re}((\cos \theta + i \sin \theta)^6) \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.2|10 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Comprehension|11 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Express cos4 theta in terms of cos theta

(i) Express cos theta in terms of tan theta (ii) Express cos theta in terms of "cosec" theta

Express tan theta in terms of cos theta

The value of cos 2 theta in terms of cot theta is ________

4cos6 theta cos4 theta cos2 theta=

sin^(4) theta + cos^(4) theta in terms of sin theta is ______

Express (sin4 theta)/(sin theta) in terms of cos^(2)theta and cos theta

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?

The value of 2(sin^6 theta+ cos^6 theta )-3 (sin^4 theta + cos^4 theta) is ……..

Smallest positive value of theta satisfying 8sin theta cos2 theta sin3 theta cos4 theta=cos6 theta is

CENGAGE-BINOMIAL THEOREM-Exercise 8.1
  1. The first three terms in the expansion of (1+a x)^n(n!=0) are 1,6xa n ...

    Text Solution

    |

  2. If the coefficient of 4th term in the expansion of (a+b)^n is 56, then...

    Text Solution

    |

  3. The two successive terms in the expansion of (1+x)^24 whose coefficie...

    Text Solution

    |

  4. If the number of terms in the expansion of (x+y+z)^n are 36, then find...

    Text Solution

    |

  5. Find the value of 1/(81^n)-(10)/(81^n)^(2n)C1+(10^2)/(81^n)^(2n)C2-(10...

    Text Solution

    |

  6. Prove that sum(r=0)^(n) (-1)^(r)""^(n)C(r)[1/(2^(r))+(3^(r))/(2^(2r...

    Text Solution

    |

  7. Find n in the binomial (2 3+1/(3 3))^n , if the ration 7th term from t...

    Text Solution

    |

  8. If the coefficients of (r-5)^(t h) and (2r-1)^(t h) terms in the expan...

    Text Solution

    |

  9. Find the number of irrational terms in the expansion of (5^(1//6)+2^(1...

    Text Solution

    |

  10. Represent cos 6 theta in terms of cos theta.

    Text Solution

    |

  11. Find the number of nonzero terms in the expansion of (1+3sqrt(2)x)^9+(...

    Text Solution

    |

  12. Find the value of (sqrt(2)+1)^6-(sqrt(2)-1)^6dot

    Text Solution

    |

  13. If 1/(sqrt(4x+1)){((1+sqrt(4x+1))/2)^n-((1-sqrt(4x+1))/2)^n}=a0+a1x t...

    Text Solution

    |

  14. Let R=(5sqrt(5)+11)^(2n+1)a n df=R-[R]w h e r e[] denotes the greatest...

    Text Solution

    |

  15. If the middle term in the binomial expansion of (1/x+xsinx^(10)) is eq...

    Text Solution

    |

  16. Find the middle term in the expansion of (x^2+1/(x^2)+2^n)dot

    Text Solution

    |

  17. If the number of terms in the expansion (1+2x-3y+4z)^(n) is 286, then...

    Text Solution

    |