Home
Class 12
MATHS
Find the value of {3^(2003)//28}, w h e ...

Find the value of `{3^(2003)//28}, w h e r e{dot}` denotes the fractional part.

Text Solution

Verified by Experts

The correct Answer is:
`19//28`

`E = 3^(2003) = 3^(2001) xx 3^(2) = 9(27)^(667) = 9(28-1)^(667)`
`rArr E = 9[.^(667)C_(0) 28^(667) - .^(667)C_(1)(28)^(666) + "….."-.^(667)C_(667)]`
`= 9 xx 28k - 9`
`rArr E/28 = 9k - (9)/(28) = 9k = 1 + 19/28`
That means if we divide `3^(2003)` by `28`, the remainder is `19`. Thus, `{(3^(2003))/(28)} = 19/28`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.3|7 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.4|13 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.1|17 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the value of {3^(2003)/28}, where {.} denotes the fractional part.

The value of {(3^(2003))/(28)} is

Find the value of int_(0)^(x){t}dt,x inR^(+) , here {.} denotes fractional part of 'x'.

Evaluate int_(-3)^(5) e^({x})dx , where {.} denotes the fractional part functions.

Period of the function f(x)=cos(cos pi x)+e^({4x}), where {.} denotes the fractional part of x, is

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is

The value of the integral int_(-4)^(4)e^(|x|){x}dx is equal to (where {.} denotes the fractional part function)

lim_(x rarr oo){(e^(x)+pi^(x))^((1)/(x))}= where {.} denotes the fractional part of x is equal to

lim_(x rarr0){(1+x)^((2)/(x))} (where {.} denotes the fractional part of x(a)e^(2)-7(b)e^(2)-8(c)e^(2)-6(d) none of these