Home
Class 12
MATHS
If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1...

If `(4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r)`, then the value of `sum_(r=0)^n a_r`

A

`3^(n)`

B

`4^(n)`

C

`5^(n)`

D

`6^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum_{r=0}^{n} a_r \) given the equation: \[ (4x^2 + 1)^n = \sum_{r=0}^{n} a_r (1 + x^2)^{n-r} x^{2r} \] ### Step-by-Step Solution: 1. **Understanding the Given Equation**: The left-hand side is \( (4x^2 + 1)^n \). We can expand this using the Binomial Theorem: \[ (4x^2 + 1)^n = \sum_{k=0}^{n} \binom{n}{k} (4x^2)^k (1)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} 4^k x^{2k} \] 2. **Identifying the Right-Hand Side**: The right-hand side is given as: \[ \sum_{r=0}^{n} a_r (1 + x^2)^{n-r} x^{2r} \] Here, \( (1 + x^2)^{n-r} \) can also be expanded using the Binomial Theorem: \[ (1 + x^2)^{n-r} = \sum_{j=0}^{n-r} \binom{n-r}{j} (x^2)^j \] 3. **Combining the Terms**: Substituting this expansion back into the right-hand side gives: \[ \sum_{r=0}^{n} a_r \left( \sum_{j=0}^{n-r} \binom{n-r}{j} x^{2j} \right) x^{2r} \] This can be rearranged to: \[ \sum_{r=0}^{n} a_r \sum_{j=0}^{n-r} \binom{n-r}{j} x^{2(j+r)} \] 4. **Matching Coefficients**: For the two sides to be equal, the coefficients of \( x^{2k} \) must match for each \( k \). On the left-hand side, the coefficient of \( x^{2k} \) is \( \binom{n}{k} 4^k \). On the right-hand side, we need to consider all combinations of \( r \) and \( j \) such that \( j + r = k \). 5. **Finding \( \sum_{r=0}^{n} a_r \)**: To find \( \sum_{r=0}^{n} a_r \), we can evaluate the original expression at \( x = 1 \): \[ (4(1^2) + 1)^n = (4 + 1)^n = 5^n \] The right-hand side becomes: \[ \sum_{r=0}^{n} a_r (1 + 1^2)^{n-r} 1^{2r} = \sum_{r=0}^{n} a_r (2)^{n-r} = \sum_{r=0}^{n} a_r 2^{n-r} \] 6. **Setting Up the Equation**: Thus, we have: \[ 5^n = \sum_{r=0}^{n} a_r 2^{n-r} \] 7. **Finding \( \sum_{r=0}^{n} a_r \)**: If we let \( x = 1 \) in the equation \( \sum_{r=0}^{n} a_r 2^{n-r} \), we can express it as: \[ \sum_{r=0}^{n} a_r = \sum_{r=0}^{n} a_r 2^0 = \sum_{r=0}^{n} a_r \] Therefore, we can deduce that: \[ \sum_{r=0}^{n} a_r = 5^n / 2^n = \left( \frac{5}{2} \right)^n \] ### Final Result: Thus, the value of \( \sum_{r=0}^{n} a_r \) is: \[ \sum_{r=0}^{n} a_r = \left( \frac{5}{2} \right)^n \]

To solve the problem, we need to find the value of \( \sum_{r=0}^{n} a_r \) given the equation: \[ (4x^2 + 1)^n = \sum_{r=0}^{n} a_r (1 + x^2)^{n-r} x^{2r} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Statement : if n in Nandn is not a multiple of 3 and (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then the value of sum_(r=0)^(n)(-1)^(r)ar^(n)C_(r) is zero Statement 2: The cofficient of x^(n) in the expansion of n=3k+1 or n=3k+2

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If (1-x^(2))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(2n-r), then a_(r) is equal to ^(n)C_(r) b.^(n)C_(r)3^(r) c.^(2n)C_(r) d.^(n)C_(r)2^(r)

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(n) and sum_(r=0)^(n)(C_(r))/(r+1)=k then the value of k is

Let (1 + x + x^(2))^(100)=sum_(r=0)^(200)a_(r)x^(r) and a=sum_(r=0)^(200)a_(r) , then value of sum_(r=1)^(200)(ra_(r))/(25a) is

If (1-x^(3))^(n)=underset(r=0)overset(n)(sum)a_(r)x^(r)(1-x)^(3n-2r) , then the value of a_(r) , where n in N is

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda.

If a_(n)=sum_(r=0)^(n)(1)/(*^(n)C_(r)), the value of sum_(r=0)^(n)(n-2r)/(n^(n)C_(r))

If (1+x+x^(2))^(n)=sum_(r=0)^(2n)a_(r)x^(r), then prove that a_(r)=a_(2n-r)

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. The number of distinct terms in the expansion of (x+1/x+1/(x^2))^(15) ...

    Text Solution

    |

  2. The value of 2xx.^(n)C(1) + 2^(3) xx .^(n)C(3) + 2^(5) + "…." is

    Text Solution

    |

  3. If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1+x^(2))^(n-r)x^(2r), then the ...

    Text Solution

    |

  4. The fractional part of 2^(4n)//15 is (n in N)

    Text Solution

    |

  5. If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest i...

    Text Solution

    |

  6. The remainder when the number 3^(256) - 3^(12) is divided by 8 is

    Text Solution

    |

  7. The smallest integer larger than (sqrt(3) + sqrt(2))^(6) is

    Text Solution

    |

  8. The coefficient of x^5 in the expansion of (1+x^2)(1+x)^4 is

    Text Solution

    |

  9. Coefficient of x^(2)in the expansion of (x^(3) + 2x^(2) + x + 4)^(15) ...

    Text Solution

    |

  10. If the coefficients of rth and (r+1)t h terms in the expansion of (3+7...

    Text Solution

    |

  11. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  12. If (1+2x+x^(2))^(n) = sum(r=0)^(2n)a(r)x^(r), then a(r) =

    Text Solution

    |

  13. If the term independent of x in the (sqrt(x)-k/(x^2))^(10) is 405, the...

    Text Solution

    |

  14. The coefficient of x^(53) in the expansion sum(m=0)^(100) ""^(100)C(...

    Text Solution

    |

  15. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  16. The coefficient of x^3 in the expansion of (1-x+x^2)^5 is

    Text Solution

    |

  17. The term independent of a in the expansion of (1+sqrt(a)+1/(sqrt(a)-1)...

    Text Solution

    |

  18. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  19. If the coefficient of x^(n) in (1+x)^(101) (1+x^(3)-x^(6))^(30) is

    Text Solution

    |

  20. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |