Home
Class 12
MATHS
The value of .^(20)C(10)+.^(20)C(1)+.^(2...

The value of `.^(20)C_(10)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15)` is

A

`2^(19)-((.^(20)C_(10)+.^(20)C_(9)))/(2)`

B

`2^(19)-((.^(20)C_(10)+2xx.^(20)C_(9)))/(2)`

C

`2^(19)-(.^(20)C_(10))/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{12} + \binom{20}{13} + \binom{20}{14} + \binom{20}{15} \] ### Step 1: Rearranging the Terms Notice that the binomial coefficient has a symmetry property: \[ \binom{n}{k} = \binom{n}{n-k} \] Using this property, we can rewrite some of the terms: \[ \binom{20}{12} = \binom{20}{8}, \quad \binom{20}{13} = \binom{20}{7}, \quad \binom{20}{14} = \binom{20}{6}, \quad \binom{20}{15} = \binom{20}{5} \] Thus, we can rewrite the expression as: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{8} + \binom{20}{7} + \binom{20}{6} + \binom{20}{5} \] ### Step 2: Grouping the Terms Now, we can group the terms: \[ \left( \binom{20}{1} + \binom{20}{19} \right) + \left( \binom{20}{2} + \binom{20}{18} \right) + \left( \binom{20}{3} + \binom{20}{17} \right) + \left( \binom{20}{4} + \binom{20}{16} \right) + \left( \binom{20}{5} + \binom{20}{15} \right) + \binom{20}{10} \] ### Step 3: Using the Binomial Theorem According to the Binomial Theorem, the sum of all binomial coefficients for a given \( n \) is: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] For \( n = 20 \): \[ \sum_{k=0}^{20} \binom{20}{k} = 2^{20} \] ### Step 4: Excluding Unwanted Terms We need to exclude the terms \( \binom{20}{9} \), \( \binom{20}{10} \), and \( \binom{20}{11} \) from the total sum: \[ \sum_{k=0}^{20} \binom{20}{k} - \left( \binom{20}{9} + \binom{20}{10} + \binom{20}{11} \right) \] ### Step 5: Calculating the Final Value Thus, the value we need is: \[ 2^{20} - \left( \binom{20}{9} + \binom{20}{10} + \binom{20}{11} \right) \] ### Step 6: Simplifying Further Since \( \binom{20}{9} = \binom{20}{11} \) and \( \binom{20}{10} \) is the middle term, we can express this as: \[ 2^{20} - 2\binom{20}{10} \] ### Final Answer Now, we can compute the value: \[ \text{Final Value} = 2^{20} - 2 \cdot \binom{20}{10} \]

To solve the problem, we need to evaluate the expression: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{12} + \binom{20}{13} + \binom{20}{14} + \binom{20}{15} \] ### Step 1: Rearranging the Terms Notice that the binomial coefficient has a symmetry property: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

1.^(20)C_(1)-2.^(20)C_(2)+3.^(20)C_(3)-...-20.^(20)C_(20)

The value of 1^(1).^(20)C_(1)+2^(2).^(20)C_(2)+3^(2).^(20)C_(3)+….+(20)^(2).^(20)C_(20) is

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is (A) 2^(21) - 2^(11) (B) 2^(21) - 2^(10) (C) 2^(20) - 2^(9) (D) 2^(20) - 2^(10)

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The value of "^20 C_0+^(20)C_1+^(20)C_2+^(20)C_3+^(20)C_4+^(20)C_ 12+^(20)C_ 13+^(20)C_14+^(20)C_15 is a. 2^(19)-(( "^(20)C_10 + "^(20)C_9))/2 b. 2^(19)-((^(20)C 10+2xx^(20)C9))/2 c. 2^(19)-(^(20)C 10)/2 d. none of these

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. Maximum sum of coefficient in the expansion of (1-xsintheta+x^2)^n is ...

    Text Solution

    |

  2. If the sum of the coefficients in the expansion of (a+b)^n is 4096, th...

    Text Solution

    |

  3. The value of .^(20)C(10)+.^(20)C(1)+.^(20)C(2)+.^(20)C(3)+.^(20)C(4)+....

    Text Solution

    |

  4. The sum of the series C 20()0-C 20()1+C 20()2-C 20()3+...-...+C 20()(1...

    Text Solution

    |

  5. If (3+x^(2008)+x^(2009))^(2010)=a0+a1x+a2x^2++an x^n , then the value ...

    Text Solution

    |

  6. Value of sum(k=1)^(oo) sum(r=0)^(k) (1)/(3^(k)) (""^(k)C(r)) is

    Text Solution

    |

  7. The value of sum(r=0)^(10) (r)""^(20)C(r) is equal to

    Text Solution

    |

  8. [(^n C0+^n C3+)1//2(^n C1+^n C2+^n C4+^n C5]^2+3//4(^n C1-^n C2+^n C4-...

    Text Solution

    |

  9. The value of sum(r=1)^(n+1) (sum(k=1)^(n) ""^(k)C(r-1)) (where r,k, n ...

    Text Solution

    |

  10. The sum sumsum(0leilejle10) (""^(10)C(j))(""^(j)C(r-1)) is equal to

    Text Solution

    |

  11. The value of the sum .^(1000)C(50) + .^(999)C(49) +.^(998)C(48)+"….".^...

    Text Solution

    |

  12. If sum(r=0)^(n){a(r)(x-alpha+2)^(r)-b(r)(alpha-x-1)^(r)}=0, then

    Text Solution

    |

  13. If sum(r=0)^(2n) a(r) (x-2)^(r) = sum(r=0)^(2n) b(r),(x-3)^(r) and a(k...

    Text Solution

    |

  14. The value of sum(r=2)^(10) ""^(r)C(2).""^(10)C(r) is

    Text Solution

    |

  15. If ^n+1C(r+1)dot^n Crdot^(n-1)C(r-1)=11 :6:3, then n r= 20 b. 30 c. 4...

    Text Solution

    |

  16. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  17. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  18. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  19. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  20. If sum(r=0)^(n) ((r+2)/(r+1))""^(n)C(r)=(2^(8)-1)/(6). then n is

    Text Solution

    |