Home
Class 12
MATHS
The value of sum(r=0)^(40) r""^(40)C(r)"...

The value of `sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r)` is

A

`40.^(69)C_(29)`

B

`40.^(70)C_(30)`

C

`.^(60)C_(29)`

D

`.^(70)C_(30)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the summation: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} \] ### Step-by-Step Solution: 1. **Rewrite the term**: We start by rewriting \( r \cdot \binom{40}{r} \): \[ r \cdot \binom{40}{r} = 40 \cdot \binom{39}{r-1} \] This is because \( r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \). 2. **Substituting into the summation**: Now we can substitute this into our summation: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} = \sum_{r=0}^{40} 40 \cdot \binom{39}{r-1} \cdot \binom{30}{r} \] 3. **Changing the index of summation**: To simplify the summation, we can change the index of summation by letting \( k = r - 1 \). Thus, when \( r = 0 \), \( k = -1 \) (which we can ignore), and when \( r = 40 \), \( k = 39 \): \[ = 40 \cdot \sum_{k=0}^{39} \binom{39}{k} \cdot \binom{30}{k+1} \] 4. **Using the Hockey Stick Identity**: The summation can be simplified using the Hockey Stick Identity: \[ \sum_{k=0}^{n} \binom{r}{k} \cdot \binom{s}{n-k} = \binom{r+s}{n} \] In our case, we can apply this identity: \[ \sum_{k=0}^{39} \binom{39}{k} \cdot \binom{30}{k+1} = \binom{39 + 30}{40} = \binom{69}{40} \] 5. **Final Calculation**: Now substituting back: \[ = 40 \cdot \binom{69}{40} \] ### Final Answer: Thus, the value of the summation is: \[ 40 \cdot \binom{69}{40} \]

To solve the problem, we need to find the value of the summation: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Multiple)|27 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise 8.8|10 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(40)rC(40,r)C(30,r)

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The value of sum_(r=0)^(6) (""^(6)C_(r )*""^(6)C_(6-4)) is equal to:

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The vaule of sum_(r=0)^(n-1) (""^(n)C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

CENGAGE-BINOMIAL THEOREM-Exercise (Single)
  1. If (1+x)^n=C0+C1x+C2x^2++Cn x^n ,t h e nC0C2+C1C3+C2C4++C(n-2)Cn= ((2...

    Text Solution

    |

  2. ^404C4-^303C4.^4C1+^202C4.^4C2-^101C4.^4C3=

    Text Solution

    |

  3. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is

    Text Solution

    |

  4. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to

    Text Solution

    |

  5. (n+2)^n C0 2^(n+1)-(n+1)^n C1 2^n^n C2 2^(n-1)- is equal to 4 b. 4n c....

    Text Solution

    |

  6. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  7. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  8. sum(r=0)^(300) a(r)x^(r)=(1+x+x^(2)+x^(3))^(100). if a=sum(r=0)^(300)a...

    Text Solution

    |

  9. The value of sum(r=0)^(20) r(20-r)(""^(20)C(r))^(2) is equal to

    Text Solution

    |

  10. If f(x) = .^(40)C(1).x(1-x)^(39) + 2..^(40)C(2)x^(2)(1-x)^(38)+3..^(40...

    Text Solution

    |

  11. If a(n) = sum(r=0)^(n) (1)/(""^(n)C(r)), then the value of (sumsum)(0l...

    Text Solution

    |

  12. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be 4...

    Text Solution

    |

  13. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be x^n b. x^(-n) ...

    Text Solution

    |

  14. sum(k=1)^(oo) k(1-1/n)^(k-1) =

    Text Solution

    |

  15. Find the coefficient of x in the expansion of [sqrt(1+x^2) - x]^-1 in...

    Text Solution

    |

  16. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+ is equal to x b. (1+x)...

    Text Solution

    |

  17. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) x^(3) + "….." is equal to

    Text Solution

    |

  18. If |x|<1,t h e n1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+ is equal ...

    Text Solution

    |

  19. Find the coefficient of x^5 in (1+2x+3x^2...........)^(-3/2)

    Text Solution

    |

  20. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |