Home
Class 12
MATHS
If for z as real or complex, (1+z^2+z^4)...

If for `z` as real or complex, `(1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n` `C_0-C_1+C_2-C_3++C_(16)=1` `C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7` `C_2+C_5+C_6+C_(11)+C_(14)=3^6` `C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7`

A

`C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16) = 1`

B

`C_(0) + C_(3) + C_(6) + C_(12) + C_(15) = 3^(7)`

C

`C_(2) + C_(5) + C_(8) + C_(11) + C_(14) = 3^(6)`

D

`C_(1) + C_(4) + C_(7) + C_(10) + C_(13) + C_(16) = 3^(7)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

`(1+z^(2)+z^(4))^(8) = C_(0) + C_(1)z^(2) + X_(2)z^(4) + "….." + C_(16)z^(32) " "(1)`
Putting `x = i`, where `i = sqrt(-1)`.
`(1-1+1)^(8) = C_(0) - C_(1) + C_(2) - C_(3) + "….." + C_(16)`
or `C_(0) - C_(1) + C_(2) - C_(3) + "……" + C_(16) = 1`
Also, putting `z = omega`
`(1+omega^(2)+omega^(4))^(8)= C_(0) + C_(1)omega^(2) + C_(2)omega^(4) + "....." + C_(16)omega^(32)`
or `C_(0) + C_(1)omega^(2) + C_(2)omega + C_(3) + "...." + C_(16)omega^(2) = 0 " "(3)`
Putting `x = omega^(2)`.
`(1+omega^(4)+omega^(8))^(8) = C_(0) + C_(1)omega^(4) + C_(2)omega^(8) + "......" + C_(16)omega^(64)`
or `C_(0) + C_(1)omega + C_(2)omega^(2) + "....." + C_(16)omega = 0 " "(3)`
Putting `x = 1`,
`3^(8) = C_(0) + C_(1) + C_(2) + "....."+C_(16) " "(4)`
Adding (2), (3) and (4), we have
`3(C_(0) + C_(3) + "......" + C_(15)) = 3^(8)`
or `C_(0) + C_(3) + "......" + C_(15) = 3^(7)`
Similarly, first multiplying (1) by x and then putting `1 omega, omega^(2)` and adding, we get
`C_(1) + C_(4) + C_(7) + C_(10) + C_(13)+ C_(16) = 3^(7)`
Multiplying (1) by `z^(2)` and then putting `1, omega, omega^(2)` and adding, we get
`C_(2)+C_(5)+C_(8)+C_(11)+C_(14)= 3^(7)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Matrix|3 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

If for z as real or complex,(1+z^(2)+z^(4))^(8)=C_(0)+C1z2+C2z4++C_(16)z^(32)then(a)C_(0)-C_(1)+C_(2)-C_(3)+C_(16)=1(b)C_(0)+C_(3)+C_(6)+C_(9)+C_(12)+C_(15)=3^(7)(c)C_(2)+C_(5)+C_(6)+C_(11)+C_(14)=3^(6)(d)C_(1)+C_(4)+C_(7)+C_(10)+C_(13)+C_(16)=3^(7)

If for z as real or complex . (1+z^(2) + z^(4))^(8) = C_(0) C_(1) z^(2) C_(2) z^(4) + …+ C_(16) z^(32) , prove that C_(0) + C_(3) + C_(6) + C_(9) + C_(12) + C_(15) + (C_(2) + C_(5) + C_(8) + C_(11) + C_(14)) + (C_(1) + C_(4) + C_(7) + C_(10) + C_(16)) omega^(2) = 0 , where omega is a cube root of unity .

C_(0)C_(1)+C_(1)C_(2)+C_(2)C_(3)+...+C_(n-1)C_(n)

C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+c_(3)C_(5)+...+C_(n-2)C_(n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3)x^(3) + …+ C_(n) x^(n) , then C_(0) - (C_(0) - C_(1)) + (C_(0) + C_(1) + C_(2))- (C_(0) + C_(1) + C_(2)+ C_(3)) + ...+ (-1)^(n-1) (C_0) + C_(1) + C_(2) + ...+ C_(n-1)) , when n is even integer is

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + C_(3) x^(3) + C_(4) x^(4) + ..., find the values of (i) C_(0) - C_(2) + C_(4) - C_(0) + … (ii) C_(1) - C_(3) + C_(5) - C_(7) + … (iii) C_(0) + C_(3) + C_(6) + …

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

CENGAGE-BINOMIAL THEOREM-Exercise (Multiple)
  1. Let (1+x^(2))^(2) (1+x)^(n) = sum(k=0)^(n+4) a(k)x^(k).. If a(1), a(2)...

    Text Solution

    |

  2. For natural numbers m, n, if (1-y)^m(1+y)^n=1+a1y+a2y^2+..., and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x//2+2)^8 is 1120, then x in R i...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (n)/(""^(n)C(0))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1/3)+ 11^(1/9))^6561, the number of terms free...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)(m) ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(i))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. The value of .^(n)C(0) xx .^(2n)C(r) - .^(n)C(1)xx.^(2n-2)C(r)+.^(n)C(...

    Text Solution

    |

  20. The sum 2 xx .^(40)C(2) + 6 xx .^(40)C(3) + 12 xx .^(40)C(4) + 20 xx ....

    Text Solution

    |