Home
Class 12
MATHS
The sum 2 xx .^(40)C(2) + 6 xx .^(40)C(3...

The sum `2 xx .^(40)C_(2) + 6 xx .^(40)C_(3) + 12 xx .^(40)C_(4) + 20 xx .^(40)C_(5) + "…." + 1560 xx .^(40)C_(40)` is divisible by

A

`3`

B

`5`

C

`13`

D

`2^(41)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given sum: \[ S = 2 \cdot \binom{40}{2} + 6 \cdot \binom{40}{3} + 12 \cdot \binom{40}{4} + 20 \cdot \binom{40}{5} + \ldots + 1560 \cdot \binom{40}{40} \] We can observe that the coefficients \(2, 6, 12, 20, \ldots, 1560\) can be expressed in terms of \(r\), where \(r\) is the index of the binomial coefficient. ### Step 1: Identify the pattern in the coefficients The coefficients can be represented as \(r(r-1)\) for \(r = 2, 3, 4, \ldots, 40\). This is because: - For \(r = 2\), the coefficient is \(2(2-1) = 2\) - For \(r = 3\), the coefficient is \(3(3-1) = 6\) - For \(r = 4\), the coefficient is \(4(4-1) = 12\) - For \(r = 5\), the coefficient is \(5(5-1) = 20\) - ... - For \(r = 40\), the coefficient is \(40(40-1) = 1560\) ### Step 2: Rewrite the sum Using the identified pattern, we can rewrite the sum as: \[ S = \sum_{r=2}^{40} r(r-1) \cdot \binom{40}{r} \] ### Step 3: Factor out constants We can factor \(r(r-1)\) as: \[ r(r-1) = 40 \cdot \binom{39}{r-2} \] Thus, we can express the sum as: \[ S = 40 \cdot \sum_{r=2}^{40} \binom{39}{r-2} \] ### Step 4: Change the index of summation Let \(k = r - 2\). Then when \(r = 2\), \(k = 0\) and when \(r = 40\), \(k = 38\). Therefore, we can rewrite the sum: \[ S = 40 \cdot \sum_{k=0}^{38} \binom{39}{k} \] ### Step 5: Evaluate the summation Using the binomial theorem, we know that: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] Thus: \[ \sum_{k=0}^{38} \binom{39}{k} = 2^{39} \] ### Step 6: Final expression for S Substituting back, we get: \[ S = 40 \cdot 2^{39} \] ### Step 7: Determine divisibility Now, we need to find what \(S\) is divisible by: \[ S = 40 \cdot 2^{39} = 2^3 \cdot 5 \cdot 2^{39} = 2^{42} \cdot 5 \] ### Conclusion The sum \(S\) is divisible by \(2^{42}\) and \(5\). Therefore, the answer is that \(S\) is divisible by \(2^{42}\) and \(5\).

To solve the problem, we need to analyze the given sum: \[ S = 2 \cdot \binom{40}{2} + 6 \cdot \binom{40}{3} + 12 \cdot \binom{40}{4} + 20 \cdot \binom{40}{5} + \ldots + 1560 \cdot \binom{40}{40} \] We can observe that the coefficients \(2, 6, 12, 20, \ldots, 1560\) can be expressed in terms of \(r\), where \(r\) is the index of the binomial coefficient. ### Step 1: Identify the pattern in the coefficients The coefficients can be represented as \(r(r-1)\) for \(r = 2, 3, 4, \ldots, 40\). This is because: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Comprehension)|20 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Matrix|3 Videos
  • BINOMIAL THEOREM

    CENGAGE|Exercise Exercise (Single)|90 Videos
  • AREA UNDER CURVES

    CENGAGE|Exercise Question Bank|20 Videos
  • BINOMIAL THEORM

    CENGAGE|Exercise Question Bank|31 Videos

Similar Questions

Explore conceptually related problems

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

Statement-1: The expression ""^(40)C_(r)xx""^(60)C_(0)+""^(40)C_(r-1)xx""^(60)C_(1)+""^(40)C_(r-2)xx""^(60)C_(2)+.... attains its maximum volue when r = 50 Statement-2: ""^(2n)C_(r) is maximum when r=n.

8282 + 2828 = ? xx 40

6824 + 7864 = ? xx 40

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is

CENGAGE-BINOMIAL THEOREM-Exercise (Multiple)
  1. Let (1+x^(2))^(2) (1+x)^(n) = sum(k=0)^(n+4) a(k)x^(k).. If a(1), a(2)...

    Text Solution

    |

  2. For natural numbers m, n, if (1-y)^m(1+y)^n=1+a1y+a2y^2+..., and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x//2+2)^8 is 1120, then x in R i...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (n)/(""^(n)C(0))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1/3)+ 11^(1/9))^6561, the number of terms free...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)(m) ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(i))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. The value of .^(n)C(0) xx .^(2n)C(r) - .^(n)C(1)xx.^(2n-2)C(r)+.^(n)C(...

    Text Solution

    |

  20. The sum 2 xx .^(40)C(2) + 6 xx .^(40)C(3) + 12 xx .^(40)C(4) + 20 xx ....

    Text Solution

    |