Home
Class 11
MATHS
" If "(x+iy)^(3)=u+i" ,then show that "(...

" If "(x+iy)^(3)=u+i" ,then show that "(u)/(x)+(y)/(y)=4(x^(2)-y^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+iy)^(3)= u +iv , then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2)) .

If (x+iy)^(3)=u+iv then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv, then show that (u)/(x)+(v)/(y)=4(x^(2)-y^(2))

If (x+yi)^(3)=u + vi , prove that (u)/(x) +(v)/(y) = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iy , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3) = u + iv , then show that u/x + v/y = 4(x^(2)-y^(2))

If (x+iy)^(3)=u+iv ,then show that u/x+v/y =4(x^(2) -y^(2)) ?

If (x + iy)^3 = u + iv , then show that u/x +v/y = 4(x^2 - y^2)