Home
Class 12
MATHS
Prove (9pi)/8 - 9/4 sin ^(-1) (1/3) = ...

Prove ` (9pi)/8 - 9/4 sin ^(-1) (1/3) = 9/4 sin ^(-1) (2 sqrt(2)/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 si^-1 ((2sqrt2)/3)

Prove the following : (9pi)/8-9/4 sin^(-1)(1/3)=9/4 sin^(-1) ((2sqrt2)/3)

Show that : (9pi)/8 - 9/4 sin^-1(1/3) = 9/4 sin^-1((2sqrt2)/3)

Prove that: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)

Prove that: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)

Prove That : (9pi)/8-9/4"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt(2))/3

Prove that: (9pi)/8-9/4sin^(-1)1/3=9/4sin^(-1)(2sqrt(2))/3

Prove the following: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2\ sqrt(2))/3)

(9pi)/(8)-(9)/(4)sin^(-1)""(1)/(3)=(9)/(4)sin^(-1)\ (2sqrt(2))/(3)

Prove that : (9pi)/8-9/4"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt2)/3