Home
Class 12
MATHS
The value of sin^(-1)[xsqrt(1-x)-sqrt(x)...

The value of `sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)[x sqrt(1-x)-sqrt(x)sqrt(1-x^(2))] is equal to

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^(2))] then find (dy)/(dx)

Find the (dy)/(dx) of y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2))

If y = "sin"^(-1)[xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)] and 0 lt x lt 1 then (dy)/(dx) at x = (sqrt3)/2 is

sin^(-1)(2x sqrt(1-x^(2))),x in[(1)/(sqrt(2)),1] is equal to

Find (dy)/(dx), if y=sin^(-1)[xsqrt(\ 1-x)-\ sqrt(x)\ sqrt(1-x^2)\ ]\

int(sqrt(x-1))/(xsqrt(x+1))dx is equal to

If y=sin^(-1)[xsqrt(1-x)-sqrt(x)sqrt(1-x^2]) and 0