Home
Class 11
MATHS
Prove that, in triangle ABC sin^3A cos(...

Prove that, in triangle ABC `sin^3A cos(B-C)+sin^3B cos(C-A)+sin^3C cos(A-B)=3sinAsinBsinC`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that,in triangle ABCsin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B)=3sinAsinBsinC

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B) = 3sinAsinBsinC

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B) = 3sinAsinBsinC

In any triangle ABC,prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3sin A sin B sin C

In a ABC, prove that sin^(3)A cos(B-C)+sin^(3)B cos(C-A)+sin^(3)C cos(A-B)=3s in As in Bs in

In a DeltaA B C ,\ prove that , sin^3Acos(B-C)+sin^3B cos(C-A)+sin^3\ C cos(A-B) = 3\ sin A\ sin B \ sin C

Prove that in triangle ABC,cos^(2)A+cos^(2)B-cos^(2)C=1-2sin A sin B cos C

Show that in a triangle ABC, a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0