Home
Class 11
MATHS
[vec axx(3vec b+2vec c), vec bxx(vec c-2...

`[vec axx(3vec b+2vec c), vec bxx(vec c-2vec a), 2 vec cxx(vec a-3vec b)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec axx( vec bxx vec c) , vec bxx( vec cxx vec a) and vec cxx( vec axx vec b) are: linearly dependent (b) coplanar vector parallel vectors (d) non coplanar vectors

vec axx( vec bxx vec c) , vec bxx( vec cxx vec a) and vec cxx( vec axx vec b) are: linearly dependent (b) coplanar vector (c) parallel vectors (d) non coplanar vectors

For any three vectors a,b\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot

For any three vectors adotb\ a n d\ c write the value of vec axx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)dot

For any three vectors veca , vec b , vec c show that vecaxx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)= vec0

If axx(bxxc)=(axxb)xxc , then ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) =0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

If axx(bxxc)=(axxb)xxc , then a. ( vec cxx vec a)xx vec b= vec0 b. vec cxx( vec axx vec b)= vec0 c. vec bxx( vec cxx vec a) =0 d. ( vec cxx vec a)xx vec b= vec bxx( vec cxx vec a)= vec0

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .

If vec a ,\ vec b ,\ vec c are three unit vecrtors such that vec axx vec b= vec c ,\ vec bxx vec c= vec a ,\ vec cxx vec a= vec b Show that vec a ,\ vec b ,\ vec c form an orthonormal right handed triad of unit vectors.

If vec a , vec b , and vec c are three vectors such that vec axx vec b= vec c , vec bxx vec c= vec a , vec cxx vec a= vec b , then prove that | vec a|=| vec b|=| vec c| .