Home
Class 11
MATHS
If vecA + vecB = veca , vecA . veca = 1 ...

If `vecA + vecB = veca , vecA . veca = 1` and `vecA xx vecB = vecb`, then prove that `vecA = (veca xx vecb + veca )/ |veca|^2` and `vecB = ( vecb xx veca + veca(|veca|^2 - 1))/|veca|^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

(veca + vecb) xx (veca - vecb) is :

If veca .vecb = veca.vec cand veca xx vecb = veca xx vec c,veca ne0 , then

If vecA||vecB then vecA xx vecB =……….

The angle between vecA - vecB and vecA xx vecB is ( vecA ne vecB)

For vectors vecA and vecB , (vecA + vecB). (vecA xx vecB) will be :

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .

If |veca| = |vecb|=|veca+vecb|=1 then prove that |veca-vecb|=sqrt(3) .

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb] .

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca xx vecb]