Home
Class 11
MATHS
Prove that veca xx {vecaxx (vecaxxvecb))...

Prove that `veca xx {vecaxx (vecaxxvecb))=(a·a) (b xx a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

vecaxx(vecaxx(vecaxxvecb)) equals

vecaxx(vecaxx(vecaxxvecb)) equals

Prove that vecaxx[vecaxx(vecaxxvecb)]=(veca.veca)(vecbxxveca) .

Prove that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb) .

Prove that veca xx (vecb xx vecc) + vecb xx (vecc xx veca) + vecc xx (veca xx vecb) = vec0 and hence prove that veca xx (vecb xx vecc), vecb xx (vecc xx veca), vecc xx (veca xx vecb) are coplanar.

Prove that vecA.(vecAxxvecB)=0

Prove that vecA.(vecAxxvecB)=0

Prove that vecA.(vecAxxvecB)=0

Prove that vecA.(vecAxxvecB)=0

Prove that: vecaxx[vecbxx(veccxxveca)]=(veca.vecb)(vecaxxvecc)