Home
Class 11
MATHS
Given that vecx + 1/(vecp)^2 (vecp . vec...

Given that `vecx + 1/(vecp)^2 (vecp . vecx) vecp = vecq` , show that `vecp · vecx = 1/2 vecp . vecq` and find `vecx` in terms of `vecp` and `vecq`

Promotional Banner

Similar Questions

Explore conceptually related problems

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

Given that vecp=veca+vecb and vecq=veca-vecb and |veca|=|vecb| , show that vecp.vecq=0

if vecP +vecQ = vecP -vecQ , then

if vecP +vecQ = vecP -vecQ , then

If vecp xx vecq = vecm xx vec n and vecp xx vec m = vecq xx vecn , show that vecp- vecn is parallel to vecq - vecm where vecp ne vecn and vecq ne vecm .

Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb= mu vecp, vecb.vecq=0 and |vecb|^(2) = 1 where mu is a sclar. Then |(veca.vecq) vecp-(vecp.vecq)veca| is equal to (a) 2|vecpvecq| (b) (1//2)|vecp.vecq| (c) |vecpxxvecq| (d) |vecp.vecq|

Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb= mu vecp,vecb.vecq=0 and (vecb)^(2) =1 where mu is a sclar. Then |(veca.vecq) vecp-(vecp.vecq)veca| is equal to

Given that veca,vecb,vecp,vecq are four vectors such that veca + vecb= mu vecp,vecb.vecq=0 and (vecb)^(2) =1 where mu is a sclar. Then |(veca.vecq) vecp-(vecp.vecq)veca| is equal to

Given that vecP+vecQ = vecP-vecQ . This can be true when :