Home
Class 8
MATHS
" For "(|x-1|)/(x+2)<1" ,solution set of...

" For "(|x-1|)/(x+2)<1" ,solution set of "x" is given by: "

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve for x:(x-1)/(2x+1)+(2x+1)/(x-1)=2, where x!=-(1)/(2),1

Solve for x: (x-1)/(2x+1) +(2x+1)/(x-1)=2," where "x ne -(1)/(2),1

If graph of y=(x-1)(x-2) is then draw the graph of the following (i) y=|(x-1)(x-2)| (ii) |y|=(x-1)(x-2) (iii) y=(|x|-1)(|x|-2) (iv) |(|x|-1)(|x|-2)| (v) |y|=|(|x|-1)(|x|-2)|

Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0

Solve : (i)" "((x-1)\(x-2)(x-3))/((x+1)(x+2)(x+3))" "(ii) " "(x^(4)+x^(2)+1)/(x^(2)+4x-5)lt0

Solve for x : (x - 1)/(2x + 1) + (2x + 1)/(x -1) = 2 , where x ne - (1)/(2) , 1

Solve: ((x-1)(x-2)(x-3))/((x+1)(x+2)(x+3))>1