Home
Class 12
MATHS
" The minimum value of "((x+(1)/(x))^(6)...

" The minimum value of "((x+(1)/(x))^(6)-(x^(6)+(1)/(6))-2)/((x+(1)/(x))^(3)+x^(3)+(1)/(x)3)" for "x>0" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of ((x+1/x)^6-(x^6+1/(x^6))- 2)/((x+1/x)^3+x^3+1/x^3) is (for x>o)

The minimum value of ((x+1/x)^6-(x^6+1/(x^6))- 2)/((x+1/x)^3+x^3+1/x^3) is (for x>o)

Minimum value of ((1+x^(2))(1+x^(6)))/(x^(4)) is

The minimum value of x^3-6x^2+9x+1 is

x^(3)-(1)/(x^(3))-6x+(6)/(x)

lim_(x rarr0)((1+x)^((1)/(6))-(1-x)^((1)/(6)))/(x)=(1)/(3)

If x+ (1)/(x)=3 , then x^(6) + (1)/(x^(6))= ?

If (3x)/((x-6)(x+a))=(2)/(x-6)+(1)/(x+a) then

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :