Home
Class 12
MATHS
If C0, C1 , C2, .......... Cn, are the B...

If `C_0, C_1 , C_2, .......... C_n`, are the Binomial coefficients in the expansion of `(1 + x)^n`, n being even, then `C_0 + (C_0+C_1) +(C_0 + C_1 +C_2) + ..... + (C_0 + C_1 + C_2 + .......+ C_(n-1))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0),C_(1),C_(2),........C_(n), are the Binomial coefficients in the expansion of (1+x)^(n),n being even,then C_(0)+(C_(0)+C_(1))+(C_(0)+C_(1)+C_(2))+....+(C_(0)+C_(1)+C_(2)+......+C_(n) is equal to

If C_0,C_1,C_2,.......,C_n denote the binomial coefficients in the expansion of (1+1)^n, then sum_(0ler) sum_(< s le n) (C_r+C_s)

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_0, C_1,C_2 ..., C_n , denote the binomial coefficients in the expansion of (1 + x)^n , then C_1/2+C_3/4+C_5/6+...... is equal to

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0), C_(1), C_(2), ..., C_(n) denote the binomial cefficients in the expansion of (1 + x )^(n) , then a C_(0) + (a + b) C_(1) + (a + 2b) C_(2) + ...+ (a + nb)C_(n) = .

If C_(0),C_(1),C_(2),.........,C_(n) denote the binomial coefficients in the expansion of (1+1)^(n), then sum_(0<=r

If C_(0), C_(1), C_(2),…, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)(r+1)(C_(r))

If C_(0), C_(1), C_(2), …, C_(n) denote the binomial coefficients in the expansion of (1 + x)^(n) , then sum_(r=0)^(n)sum_(s=0)^(n)C_(r)C_(s) =