Home
Class 10
MATHS
Prove that : (sin^(4)theta- cos^(4) t...

Prove that :
`(sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

What is the value of (sin^(4)theta-cos^(4)theta+1)"cosec"^(2)theta ?

Prove each of the following identities : '(i) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (ii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Prove each of the following identities : (i) sin^(6) theta + cos^(6)theta = 1- 3 sin^(2) theta cos^(2) theta (ii) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (iii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Prove that (sin^(4)theta-cos^(4)theta)/(sin^(2)theta-cos^(2)theta)=1

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .