Home
Class 12
MATHS
" Let "x=log t,t>0" and "y+1=t^(2)." The...

" Let "x=log t,t>0" and "y+1=t^(2)." Then "(d^(2)y)/(dx^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

"Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

"Let "y=t^(12)+1 and x=t^(6)+1." Then "(d^(2)y)/(dx^(2)) is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=log t , t gt 0 and y=1/t , then (d^(2)y)/(dx^(2)) , is

If x=tlogt,y=t^(t)," then "(d^2y)/(dx^(2))=

If x=logt and y=t^(2)-1 , then what is (d^(2)y)/(dx^(2)) at t = 1 equal to?

let y=t^(10)+1, and x=t^(8)+1, then (d^(2)y)/(dx^(2)) is