Home
Class 12
MATHS
hArr lim(n rarr oo)sum(r=0)^(n-1)(1)/(sq...

hArr lim_(n rarr oo)sum_(r=0)^(n-1)(1)/(sqrt(n^(2)+n^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(sqrt(n^(2)-r^(2))) =

Lt_(n rarr oo)sum_(r=0)^(n-1)((r)/(n^(2) + r^(2)))

Lt_(n rarr oo) sum_(r=1)^(n)[(1)/(sqrt(4n^(2) - r^(2)))]

The value of lim_(n rarr oo)sum_(r=1)^(n)(1)/(sqrt(n^(2)-r^(2)x^(2))) is

Find Lt(n rarr oo) sum_(r=0)^(n-1)(1)/(sqrt(n^(2) - r^(2))

lim_(n rarr oo) sum_(r=0)^(n-1) 1/(n+r) =

lim_(n rarr oo) n.sum_(r=0)^(n-1) 1/(n^(2)+r^(2)) =

lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) equals

Evaluate :lim_(n rarr oo)sum_(r=1)^(n)(1)/((n^(2)+r^(2))^(1/2))