Home
Class 11
MATHS
[Lt],[x rarr2^(+)(|x-2|)/((x-2))=]...

[Lt],[x rarr2^(+)(|x-2|)/((x-2))=]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(x rarr2^(+))(x-2)^((x-2))

lim_(x rarr2)(x-2)/(x+1)=

Lt(x rarr0)((|x|)/(x)+x+2)=

Write the value of (lim)_(x rarr2)(|x-2|)/(x-2)

lim_(x rarr2)(f(x)-f(2))/(x-2)=

lim_(x rarr2)(x-2)/(sqrt(x)-sqrt(2))

Let f(2)=4,f'(2)=4 .Then Lt_(x rarr2)(xf(2)-2f(x))/(x-2) is :

Lt_(x rarr oo)(1)/((x-3)^(2))

lim_(x rarr2)((e^(x)-e^(2))/(x-2))

Evaluate the following limit: (lim)_(x rarr2)((1)/(x-2)-(2)/(x^(2)-2x))