Home
Class 12
MATHS
[" The smallest value of the polynomial ...

[" The smallest value of the polynomial "1" point "],[x^(3)-18x^(2)+96x" in "[0,9]" is "^(*)],[0-126],[" 0"0],[0" 135"],[" 0"160]

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest value of the polynomial x^(3)-18x^(2)+96x is [0,9] is

The smallest value of the polynomial x^(3)-18x^(2)+96x in [0, 9] is …………..

The smallest value of th polynomial x^(3) - 18 x^(2) + 96 x in [0,9] is

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

The least value of the function f(x)=x^(3)-18x^(2)+96x in the interval [0,9] is 126(b)135(c)160(d)0

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?

The least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is 126 (b) 135 (c) 160 (d) 0

The least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is 126 (b) 135 (c) 160 (d) 0