Home
Class 12
MATHS
f(x)=Minimum{tanx,cotx}AA x in(0,pi/2) T...

`f(x)`=Minimum`{tanx,cotx}AA x in(0,pi/2)` Then `int_0^(pi/3)f(x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi x f(sin x)dx is equal to

int_0^(pi) x f (sin x) dx is equal to :

int_(0)^(pi) x f (sin x) dx is equal to

int _(0) ^(pi) x f (sin x )dx is equal to :

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If f(x)=abs(sinx)+abs(cosx) ,then int_0^pi f(x) dx is equal to

int_0^(pi/2)In(tanx+cotx)dx

If f(x)=tanx-tan^(3)x+tan^(5)x-…" to "infty with 0 lt x ltpi/4 , then int_(0)^(pi/4)f(x)dx is equal to :

A continous function f(x) is such that f(3x)=2f(x), AA x in R . If int_(0)^(1)f(x)dx=1, then int_(1)^(3)f(x)dx is equal to

If f(x) = f(pi + e - x) and int_e^(pi) f(x) dx = 2/(e + pi) , then int_e^(pi) xf(x) dx is equal to