Home
Class 12
MATHS
int(0)^((pi)/(2))log tan xdx=...

int_(0)^((pi)/(2))log tan xdx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log sin xdx=int_(0)^((pi)/(2))log cos xdx=(1)/(2)(pi)log((1)/(2))

The value of int_(0)^((pi)/(2))log(tan x)dx is equal to -

Evaluate int_(0)^((pi)/(2))log sin xdx

Prove that int_(0)^((pi)/(2)) log ( tan x ) dx = 0

int_(0)^((pi)/(2))log(tan x)*dx

Using integral int_(0)^(-(pi)/(2))ln(sin x)dx=-int_(0)^( pi)ln(sec x)dx=-(pi)/(2)ln2 and int_(0)^((pi)/(2))ln(tan x)dx=0 and int_(0)^((pi)/(4))ln(1+tan x)dx=(pi)/(8)

int_(0)^((pi)/(2))log cos xdx equals

Evaluate :int_(0)^((pi)/(4))tan xdx

Prove: int_(0)^( pi/2)log|tan x|dx=0

int_(0)^((pi)/(4))log sin2xdx equals to