Home
Class 12
MATHS
" If "C(ij)" is the co-factor of "a(ij)"...

" If "C_(ij)" is the co-factor of "a_(ij)" and "A=[[1,2,3],[2,3,2],[1,2,2]]" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

Let A=[a_(ij)]_(3xx3) be a matrix, where a_(ij)={{:(x,inej),(1,i=j):} Aai, j in N & i,jle2. If C_(ij) be the cofactor of a_(ij) and C_(12)+C_(23)+C_(32)=6 , then the number of value(s) of x(AA x in R) is (are)

If A_(ij) is the co-factor of the element a_(ij) of the determinant |[2,-3,5],[6,0,4],[1,5,-7]| , then write the value of a_(32)*A_(32)

Given A=[a_(ij)]3xx3 be a matrix, where a_(ij)={i-j if i != j and i^2 if 1=j If C_(ij) be the cofactor of a_(ij), in the matrix A and B = [b_(ij)]3xx3 be a matrix such that bch that b_(ij)=sum_(k=1)^3 a_(ij) c_(jk), then the value of [(3sqrt(det B))/8] is equal to(where denotes greatest integer function and det B denotes determinant value of B)

If A_(ij) is the co-factor of the element a_(ij) of the determinant {:|(2,-3,5),(6,0,4),(1,5,-7)| , then write the value of a_(32),A_(32)

Let A=[[3,2,1],[1,-3,0],[1,2,0]] .If a_(ij) is an element of A and c_(ij) is the cofactor of a_(ij) for all i,j, then sum_(ilej,jle3)(a_(ij)c_(ij))=lambda , then (lambda)/(3) equals

If a_(ij) = | i-j| then construct [a_(ij)]_(2xx3) .

If A=[a_(ij)]_(2×3) such that a_(ij)=i+j then a 11=

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+j,ij="even"),(i-j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then det [C_(ij)]_(3xx3) is

Consider a matrix A=[a_(ij)[_(3xx3) where, a_(ij)={{:(i+2j,ij="even"),(2i-3j,ij="odd"):} . If b_(ij) is the cafactor of a_(ij) in matrix A and C_(ij)=Sigma_(r=1)^(3)a_(ir)b_(jr) , then [C_(ij)]_(3xx3) is