Home
Class 11
MATHS
If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|...

If `|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+c)`
where a, b, c are all different, then the determinant
`|(1,1,1),((x-a)^(2),(x -b)^(2),(x -c)^(2)),((x -b) (x -c),(x -c) (x -a),(x -a) (x -b))|` vanishes when

Promotional Banner

Similar Questions

Explore conceptually related problems

If |[1 1 1];[a b c];[ a^3b^3c^3]|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |[1 1 1];[(x-a)^2(x-b)^2(x-c)^2];[(x-b)(x-c) (x-c)(x-a) (x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a. a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If |1 1 1a b c a^3b^2c^3|=(a-b)(b-c)(c-a)(a+b+c),w h e r ea ,b ,c are different, then the determinant |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x-c)(x-c)(x-a)(x-a)(x-b)| vanishes when a.a+b+c=0 b. x=1/3(a+b+c) c. x=1/2(a+b+c) d. x=a+b+c

If |1 1 1a b c a^3b^3c^3|=(a-b)(b-c)(c-a)(a+b+c), then the solution of the equation |1 1 1(x-a)^2(x-b)^2(x-c)^2(x-b)(x=-c_(x-c)(x-a)(x-a)(x-b)|=0i s

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

Prove that (ax^(2))/((x -a)(x-b)(x-c))+(bx)/((x -b)(x-c))+(c)/(x-c)+1 = (x^(3))/((x-a)(x-b)(x-c)) .

If (x^(3))/((x-a)(x-b)(x-c))=1 +(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=

(x^(3))/((x-a)(x-b)(x-c))=1+(A)/(x-a)+(B)/(x-b)+(C)/(x-c) then A=