Home
Class 12
MATHS
If a ,b ,c ,d ,e, and fare in G.P. then ...

If `a ,b ,c ,d ,e`, and `f`are in G.P. then the value of `|((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)|` depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

Promotional Banner

Similar Questions

Explore conceptually related problems

If a ,b ,c ,d ,e, and fare in G.P. then the value of |((a^2),(d^2),x),((b^2),(e^2),y),((c^2),(f^2),z)| depends on (A) x and y (B) x and z (C) y and z (D) independent of x ,y ,and z

If a,b,c,d,e and f are in GP the value of |{:(a^(2),d^(2),x),(b^(2),e^(2),y),(c^(2),f"^(2),z):}| is

If a,b,c,d,e and f are in GP the value of |{:(a^(2),d^(2),x),(b^(2),e^(2),y),(c^(2),f"^(2),z):}| is

If a,b,c,d,e and f are in GP, then the value of determinant |{:(a ^(2) , d ^(2) , x), ( b ^(2) , e^(2), y) , (c^(2) , f^(2), z}| depends on a) x and y b) x and z c) y and z d) independent of x,y,z

If a,b,c,d are in A.P.and x,y,z are in G.P. then show that x^(b-c)*y^(c-a)*z^(a-b)=1

If a,b,c,d are in GP and a^x=b^y=c^z=d^u , then x ,y,z,u are in

If a, b,c> 0 and x,y,z in R then the determinant: |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to

If a, b,c> 0 and x,y,z in RR then the determinant |((a^x+a^-x)^2,(a^x-a^-x)^2,1),((b^y+b^-y)^2,(b^y-b^-y)^2,1),((c^z+c^-z)^2,(c^z-c^-z)^2,1)| is equal to: