Home
Class 12
MATHS
lim(x=0) {log(sinx) cosx}/{log(sin(x/2))...

`lim_(x=0) {log_(sinx) cosx}/{log_(sin(x/2))cos(x/2)}`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((log_(sec(x/2))cos x)/(log_(sec x)cos((x)/(2))))=

lim_(x rarr 0) (log_(sec x//2) cos x)/(log_(sec x)cos x//2) is equal to :

lim_(x rarr0)log_(cos(x/2))cos x=

lim_(x rarr 0) (1+sinx-cosx+log_e(1-x))/x^2

Lt_(x to 0)(log_(sinx)sin2x)=

If log_(cosx)sinx+log_(sinx)cosx=2 , then x =

lim_(x rarr0)(sin x)/(log_(e)(1+x)^((1)/(2)))

lim_(x rarr0)(sin x-log(e^(x)cos x))/(x sin x)