Home
Class 9
MATHS
(27/(a^3b^6c^4))^(1/3)...

`(27/(a^3b^6c^4))^(1/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(27e^(9x) + e^(12x) )^(1//3) dx is equal to a) (1//4)(27+ e^(3x) )^(1//3) + C b) (1//4) (27+ e^(3x ))^(2//3) +C c) (1//3) (27+ e^(3x) )^(4//3) + C d) (1//4)(27+ e^(3x) )^(4//3) +C

If a^(1/3)+b^(1/3)+c^(1/3)=0 show that (a+b+c)^(3)=27 abc

If a^(1//3)+b^(1//3)+c^(1//3)=0 , then show that (a+b+c)^(3)=27 abc .

((1)/(216))^(-2/3)-:((1)/(27))^(-4/3)=? a.(3)/(4)b*(2)/(3) c.(4)/(9)d.(1)/(8)

{(81)^(-3/4)xx((16)^(1/4))/(6^(-2))xx(1/27)^(-4/3)}^(1/3)=

8(a+b)^(3)+27(b+c)^(3)

{(1/3)^(-3)-(1/2)^(-3)}-:(1/4)^(-3) = (a) (19)/(64) (b) (64)/(19) (c) (27)/(16) (d) (-19)/(64)

If (a)/(b)=(1)/(3),backslash(b)/(c)=2,backslash(c)/(d)=(1)/(2),backslash(d)/(e)=3 and (e)/(f)=(1)/(4), then what is the value of (abc)/(def)?(1)/(4) (b) (3)/(4)(c)(3)/(8)(d)(27)/(4) (e) (27)/(8)

If a^(2) + b^(2) + c^(2) + 27 = 6(a + b + c) , then what is the value of root (3) (a^(3) + b^(3) - c^(3)) ?