Home
Class 12
MATHS
if I(m,n)=intx^m/(logx)^ndx, then (m+1)I...

if `I_(m,n)=intx^m/(logx)^ndx`, then `(m+1)I_(m,n)-nI_(m,n+1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(m,n)=int (x^(m))/((log x)^(n))dx then (m+1)I_(m,n)-n.I_(m,n+1)=

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=

If I_(m,n) - int (x^(m) (logx)^(n) dx then I_(m,n) - (x^(m+1))/((m + 1)) (logx)^(n) =

If I_(n)=int (logx)^(n)dx , then the value of (I_(n)+nI_(n-1)) is -

If I_(n)=int(logx)^(n)dx for all n epsilon N, I_(n)+nI_(n-1)=

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to