Home
Class 12
MATHS
If the line x+y=a touches the parabola y...

If the line `x+y=a` touches the parabola `y=x-x^2,` then find the value of `adot`

Text Solution

Verified by Experts

The correct Answer is:
a=1

Eliminating y, we have
`a-x=x-x^(2)orx^(2)-2x+a=0`
Since the touches the parabola, we must have equal roots.
Therefore,
4-4a=0 or a=1
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    CENGAGE|Exercise Exercise 5.5|9 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise 5.6|8 Videos
  • PARABOLA

    CENGAGE|Exercise Exercise 5.3|7 Videos
  • PAIR OF STRAIGHT LINES

    CENGAGE|Exercise Exercise (Numerical)|5 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|19 Videos

Similar Questions

Explore conceptually related problems

If the line x-3y+k=0 touches the parabola 3y^(2)=4x then the value of k is

If the line x + y - 1 = 0 touches the parabola y^(2)=kx, thn the value of k, is

If the line 2x+3y+k=0 touches the parabola x^(2)=108y then k =

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+1 is tangent to the parabola y^(2)=4x, then find the value of m .

If the line y=x+k is a normal to the parabola y^(2)=4x then find the value of k.

If the line x+y=1 touches the parabola y^(2)-y+x=0 ,then the coordinates of the point of contact are:

If the line 2x+3y=1 touches the parabola y^(2)=4ax then the length of latus rectum is