Home
Class 12
MATHS
Let veca, vecb and vecc be non - coplana...

Let `veca, vecb and vecc` be non - coplanar unit vectors, equally inclined to one another at an angle `theta`. If `veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc`, find scalars p, q and r in terms of `theta`.

Text Solution

Verified by Experts

Given that `veca ,vecb and vecc` are three unit vectors inclined at an angle `theta` with each other.
Also `veca , vecb and vecc` are non-coplanar, therefore,
`[veca vecb vecc] ne 0`
Also given that `veca xx vecb + vecb xx vecc d= pvec + qvecb + rvecc`
taking dot product on both sides with `veca`. we get
`p + q costheta + r cos theta= [veca vecbvecc]`
Similarly m taking dot product on both sides with `vecb and vecc` we get , respectively.
`p costheta+q+r cos theta=0`
`and p cos theta + q cos theta+r[veca vecb vecc]`
Adding (i), (ii) and (iii) we get
`p+q+r= (2[veca vecbvecc])/(2costheta+1)`
Multiplying (iv) by `cos theta` and subtraching (i) from it, we get
`p(cos theta-1)= (2[veca vecbvecc]costheta)/(2costheta+1)-[veca vecb vecc]`
`or (-[veca vecb vecc])/(2costheta+1)`
`or P= ([veca vecb vecc])/((1-cos theta) (1+2 cos theta))`
Similarly, (iv), `xx cos theta - ` (ii) gives
`r(cos theta-1)=(2[veca vecb vecc]costheta)/(2costheta+1)-[veca vecb vecc]`
`or r= (-[veca vecbvecc])/((2costheta+1)(costheta-1))`
But we have to find p,q and r in terms of `theta` only, so let us find the value of `[veca vecb vecc]`
we know that
`[veca vecb vecc]^(2)=|{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vec c),(vecc.veca,vecc.vecb,vecc.vecc):}|= |{:(1,costheta,costheta),(costheta,1,cos theta),(cos theta,cos theta,1):}|`
On operating `C_(1) to C_(1) + C_(2)+C_(3)`, we get
`|{:(1+2costheta,costheta,costheta),(1+2costheta,1,costheta),(1+2costheta,costheta,1):}|=(1+2costheta)|{:(1,costheta,cos theta),(1,1,costheta),(1,cos theta,1):||`
Operating `R_(1) to R_(1)-R_(2)and R_(2) to R_(2)- R_(3)`, we get
`(1+2costheta)|{:(0,costheta-1,0),(0,1-costheta,costheta),(1,cos theta,1):}|`
Expanding along `C_(1)`
`(1 + 2cos theta) (1-cos theta)^(2)`
`[veca vecb vecc] = (1-cos theta) sqrt(1+2costheta)`
thus , we get
`P= 1/(sqrt(1+2costheta)),q= (-2costheta)/(sqrt(1+2costheta)),`
`r=1/(sqrt(1+2cos theta))`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise Exercise|337 Videos
  • DETERMINANTS

    CENGAGE|Exercise Question Bank|23 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos

Similar Questions

Explore conceptually related problems

Let veca , vecb and vec c be non coplanar unit vectors equally inclined to one another at an acute angle theta . Then |[veca vecb vec c]| in terms of theta is equal to

Let veca, vecb and vecc be three non-coplanar unit vectors such that the angle between every pair of them is pi//3 . If veca xx vecb + vecb xx vecc =pveca + qvecb + rvecc , where p, q and r are scalars, then the value of (p^(2) + 2q^(2)+ r^(2))/q^(2) is:

veca, vecb, vecc are non-zero unit vector inclined pairwise with the same angle theta . P,q,r are non-zero scalars satisfying veca xx vecb + vecb xx vecc=pveca + qvecb + rvecc . Now, answer the following questions: q/2+2 cos theta is equal to:

veca, vecb, vecc are non-zero unit vector inclined pairwise with the same angle theta . P,q,r are non-zero scalars satisfying veca xx vecb + vecb xx vecc=pveca + qvecb + rvecc . Now, answer the following questions: Volume of parallelogram with edges a,b and c is equal to:

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc^(2)] , then lambda is equal to

If veca , vecb and vecc are non- coplanar vectors and veca xx vecc is perpendicular to veca xx (vecb xx vecc) , then the value of [ veca xx ( vecb xx vecc)] xx vecc is equal to

CENGAGE-DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS -Exercise
  1. Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(v...

    Text Solution

    |

  2. The position vectors of the vertices A, B and C of a tetrahedron ABCD ...

    Text Solution

    |

  3. Let veca, vecb and vecc be non - coplanar unit vectors, equally inclin...

    Text Solution

    |

  4. If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+ve...

    Text Solution

    |

  5. For any two vectors vecu and vecv prove that (1+|vecu|^2(1+|vecv|^20=(...

    Text Solution

    |

  6. Let vecu and vecv be unit vectors. If vecw is a vector such that vecw+...

    Text Solution

    |

  7. find three- dimensional vectors, vecv1, vecv2 and vecv3 " satisfying "...

    Text Solution

    |

  8. Let V be the volume of the parallelepied formed by the vectors, veca ...

    Text Solution

    |

  9. vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, be...

    Text Solution

    |

  10. If veca, vecb, vecc and vecd ar distinct vectors such that veca xx v...

    Text Solution

    |

  11. P(1) and P(2) are planes passing through origin, L(1) and L(2) are two...

    Text Solution

    |

  12. If the incident ray on a surface is along the unit vector vec v, the r...

    Text Solution

    |

  13. Let vecA , vecB and vecC be vectors of legth , 3,4and 5 respectively. ...

    Text Solution

    |

  14. The unit vector perendicular to the plane determined by P (1,-1,2) ,C(...

    Text Solution

    |

  15. the area of the triangle whose vertices are A ( 1,-1,2) , B ( 1,2, -1)...

    Text Solution

    |

  16. If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(v...

    Text Solution

    |

  17. If vecA=(1,1,1) and vecC=(0,1,-1) are given vectors then find a vector...

    Text Solution

    |

  18. Let vecb=4hati+3hatj and vecc be two vectors perpendicular to each oth...

    Text Solution

    |

  19. The components of a vector veca along and perpendicular to a non-zero ...

    Text Solution

    |

  20. A unit vector coplanar with veci + vecj + 2veck and veci + 2 vecj + ve...

    Text Solution

    |