Home
Class 12
MATHS
If the points A(0,0),B(cosalpha,sinalpha...

If the points `A(0,0),B(cosalpha,sinalpha)`, and `C(cosbeta,sinbeta)` are the vertices of a right- angled triangle, then

Promotional Banner

Similar Questions

Explore conceptually related problems

The points A(0,0),B(cosalpha,sinalpha) and C(cosbeta,sinbeta) are the vertices of a right-angled triangle if (a) sin((alpha-beta)/2)=1/(sqrt(2)) (b) cos((alpha-beta)/2)=-1/(sqrt(2)) (c) cos((alpha-beta)/2)=1/(sqrt(2)) (d) sin((alpha-beta)/2)=-1/(sqrt(2))

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

The distance between the points (a cosalpha, a sinalpha) and (a cosbeta, a sinbeta) where a> 0

If A=|(1+cosalpha,1+sinalpha,1),(1+cosbeta,1+sinbeta,1),(1,1,1)|ne0 , then :

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is

P(cosalpha,sinalpha), Q(cosbeta, sinbeta) , R(cosgamma, singamma) are vertices of triangle whose orthocenter is (0, 0) then the value of cos(alpha-beta) + cos(beta-gamma) + cos(gamma-alpha) is