Home
Class 12
MATHS
let f(x)= (1-x) when 0lt=xlt=1 f(x)=0 wh...

let `f(x)= (1-x)` when `0lt=xlt=1` `f(x)=0` when `1ltxlt=2` `f(x)=(2-x)` when `2ltxlt=3` define the function `F(x)= int_0^xf(t)dt`and show that F is continuous and differentiable in (0,3)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let: f(x)=int_(0)^(x)|2t-3|dt. Then discuss continuity and differentiability of f(x) at x=(3)/(2)

Let f(x)=[|x|-|x-1|]^(2) What is f'(x) equal to when 0lt xlt1 ?

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Show that f(x)={5x-4 , when 0ltxle1, 4x^3-3x , when 1ltxlt2 is continuous at x=1.

Let Q(x)=f(x)+f(1-x) and f''(x)lt0 for 0ltxlt1 then on (0,1/2)

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=