If `(2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0)`, then the values of p and q are ?
A
p=6,q=27
B
`p=3, q=(27)/(2)`
C
`p=6,q=(27)/(2)`
D
`p=3, q=27`
Text Solution
Verified by Experts
The correct Answer is:
B
`p=3, q-(27)/(2)`
Topper's Solved these Questions
SAMPLE PAPER 2019
XII BOARDS PREVIOUS YEAR|Exercise Fill in the blanks|3 Videos
SAMPLE PAPER 2019
XII BOARDS PREVIOUS YEAR|Exercise Fill in the blanks 14A|1 Videos
QUESTION PAPER 2023
XII BOARDS PREVIOUS YEAR|Exercise Question|45 Videos
XII Boards
XII BOARDS PREVIOUS YEAR|Exercise All Questions|263 Videos
Similar Questions
Explore conceptually related problems
Given vec(A)=2hat(i)+phat(j)+qhat(k) and vec(B)=5hat(i)+7hat(j)+3hat(k) . If vec(A)||vec(B) , then the values of p and q are, respectively,
If the vectors -3hat(i)+4hat(j)-2hat(k),hat(i)+2hat(k),hat(i)-phat(j) are coplanar, then the value of p is
Two vector vec(P) = 2hat(i) + bhat(j) + 2hat(k) and vec(Q) = hat(i) + hat(j) + hat(k) are perpendicular. The value of b will be :
If vec(a)=(2hat(i)+6hat(j)+27hat(k)) and vec(b)=(hat(i)+lambda(j)+mu hat(k)) are such that vec(a)xxvec(b)=vec(0) then find the values of lambda and mu .
If vec(A) = 3hat(i) - 4hat(j) + hat(k) and vec(B) = 4hat(j) + phat(i) + hat(k) for what value of p, vec(A) and vec(B) will ve collinear ?
If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .
If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is
vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .
XII BOARDS PREVIOUS YEAR-SAMPLE PAPER 2019-Section D 35 B