Home
Class 12
CHEMISTRY
Dissociation constant for Ag(NH(3))(2)^(...

Dissociation constant for `Ag(NH_(3))_(2)^(+)` into `Ag^(+)` and `NH_(3)` is `6 xx 10^(-14)`. Calculate `E^(@)` for the half reaction.
`Ag(NH_(3))_(2)^(+) + e rarr Ag + 2NH_(3)`
Given, `Ag^(+) + e rarr Ag` has `E^(@) = 0.799 V`

Promotional Banner

Similar Questions

Explore conceptually related problems

K_(d) for dissociation of [Ag(NH_(3))_(2)]^(+) into Ag^(+) and NH_(3) is 6 xx 10^(-8) . Calculae E^(@) for the following half reaction. Ag(NH_(3))_(2)^(+) +e^(-) rarr Ag +2NH_(3) Given Ag^(+) +e^(-) rarr Ag, E^(@) = 0.799V

K_(d) for dissociation of [Ag(NH_(3))_(2)]^(+) into Ag^(+) and NH_(3) is 6 xx 10^(-8) . Calculae E^(@) for the following half reaction. AG(NH_(3))_(2)^(+) +e^(-) rarr Ag +2NH_(3) Given Ag^(+) +e^(-) rarr Ag, E^(@) = 7.99V

K_(d) for dissociation of [Ag(NH_(3))_(2)]^(+) into Ag^(+) and NH_(3) is 6 xx 10^(-8) . Calculae E^(@) for the following half reaction. AG(NH_(3))_(2)^(+) +e^(-) rarr Ag +2NH_(3) Given Ag^(+) +e^(-) rarr Ag, E^(@) = 7.99V

The stability (or formation) constant (K_(f)) for [Ag(NH_(3))_(2)]^(+) is 1.6xx10^(7) . Calculate the ratio of the concentrations of [Ag(NH_(3))_(2)]^(+) and Ag^(+) in 0.12M NH_(3) solution.

Calculate The ratio of [Ag(NH_(3))_(2)]^(+)and[Ag^(+)] in 0.1 M NH_(3) solution.

The name of the compound ([ Ag(NH_(3))_(2) ][ Ag(CN)_(2) ] is

The hybridisation of Ag in [Ag(NH_3)]_2^(+) complex is

The hybridisation of Ag in [Ag(NH_3)_2]^(+) complex is

E_0 for the reaction , Ag^(+) + e^(-) to Ag , is 0.8 V . Calculate E^@ for the reaction. Ag(NH_3)_(2)^(+) + e^(-) to Ag + 2NH_3, if the dissociation constant for. Ag(NH_3)_(2)^(+) into NH_3 and Ag^(+) is 6 xx 10^(-14).