Home
Class 12
MATHS
if a>0 , c>0 , b=sqrt(ac) , a!=1 , c!=1 ...

if `a>0 , c>0 , b=sqrt(ac) , a!=1 , c!=1 , ac!=1 ` and `n>0` then find an expression for `{log_a n-log_b n}/{log_b n-log_c n} ` in terms of `log_a n` and `log_c n`

Promotional Banner

Similar Questions

Explore conceptually related problems

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1a>dn>0 then find an expression for (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) in terms of log_(a)n and log_(c)n

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

if quad 0,c>0,b=sqrt(ac),a!=1,c!=1,ac!=1 and n>0 then the value of (log a^(n)-log b^(n))/(log b^(n)-log c^(n)) is equal to

Prove that: log_a x=log_bx xx log_c b xx…xx log_n m xx log_a n

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

If a gt 0, c gt 0 , " b " = sqrt(ac) and " ac " ne 1 , N gt 0 , then (log_(a) N - log_(b) N)/(log_(b) N - log_(c) N) =

If agt0,cgt0,b=sqrt(ac),a,c and ac ne 1 , N gt0 prove that (log_(a)N)/(log_(c )N)=(log_(a)N-log_(b)N)/(log_(b)N-log_(c )N)

If a, ,b c, are in G.P., then log_(a) n, log_(b) n, log_(c) n are in