Home
Class 12
MATHS
x(dy)/(dx)=y(logy-logx+1)...

`x(dy)/(dx)=y(logy-logx+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x(dy)/(dx)=y(log y -logx+1), then the solution of the equation is

x(dy)/(dx)=y(logy-logx), where y=vx

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .