Home
Class 11
MATHS
Given sin B =1/5*sin (2A +B) then tan (...

Given `sin B =1/5*sin (2A +B)` then `tan (A +B)= k tan A,` where k has the value equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin B=(sin(2A+B))/(5) then (tan(A+B))/(tan A)=?

If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

If sinB=1/5sin(2A+B), then (tan(A+B))/(tanA) is equal to

(sin2A + sin2B) / (sin2A-sin2B) = (tan (A + B)) / (tan (AB))

If tan A=(1-cos B)/(sin B), then tan2A=tan B

If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

If 2 tan A=3 tan B, then (sin 2B)/(5-cos 2B) is equal to

If sin(A + B) = 1 and 2 sin (A - B) = 1, where 0 lt A, B lt pi/2 then what is tan A:tan B equal to?

If an angle alpha is divided into two parts A and B such that A-B=x and tan A: tan B=k:1 , then the value of sin x is

If tan A= (1- cos B)/(sin B), then tan 2A is equal to