Home
Class 12
MATHS
veca and vecb are two non-collinear vect...

`veca and vecb` are two non-collinear vectors then `|veca+vec b+(veca xx vecb)|^2 +(1-veca*vecb)^2` is always equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

Given that veca and vecb are two non zero vectors, then the value of (veca + vecb) xx (veca-vecb) is,

If veca, vecb and vecc are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca" and "vecb are any two vectors, then (veca xx vecb)^(2)= |veca|^(2)|vecb|^(2)-(veca* vecb)^(2) .