Home
Class 12
MATHS
If f(x)={x/(e^(1/ x)+1), x!=0 and 0, x=...

If `f(x)={x/(e^(1/ x)+1), x!=0 and 0, x=0`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(1)/(e^((1)/(x))+1),x!=0,0,x=0 then

If f(x)={x e^(-(1/(|x|)+1/x)),\ x!=0 , 0,\ x=0,\ t h e n\ f(x) is a. Continuous as well as differentiable for all x b. Continuous for all x but not differentiable at x=0 c. Neither differentiable nor continuous at x=0 d. Discontinuous every where

Check the continuity of the following functions: f(x){(1)/(1-e^((1)/(x))),x!=0 and 0,x=0

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

If f(x)=(x)/(1+e^(1//x))"for "x ne 0, f(0)=0" then at x=0, f(x) is"

if f(x)=e^(-(1)/(x^(2))),x!=0 and f(0)=0 then f'(0) is

If f(x)={(x)/(1+e^((1)/(x))) for x!=0,0f or x=0 then the function f(x) is differentiable for

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is